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DYNAMIC HEDGING 

 
TAFADZWA TSAMBATARE AND ALDO DELGADO 

 
ABSTRACT. This project explores the implementation of Delta and Delta-Gamma hedging strate- 
gies within the Black-Scholes framework. Using a simulated asset price process, we investigate 

the profit and loss distributions of both hedging approaches under varying drift (µ) assumptions 
and analyze their performance across 5,000 simulated paths. We also examine the hedging posi- 
tions for sample paths, highlighting scenarios where the asset ends in and out of the money. We 
then assess the impact of model misspecification by comparing hedging outcomes under a range 
of real-world volatilities different from the assumed volatility. Transaction costs are included to 
make the analysis more realistic, providing insights into the strengths and weaknesses of Delta and 
Delta-Gamma hedging. 

 
 

 

1. INTRODUCTION 

Hedging strategies play an important role in managing the risk associated with derivative in- 
struments. Delta and Delta-Gamma hedging are two approaches that leverage sensitivities of 
option prices to the underlying asset to mitigate risk. The Black-Scholes model provides a theo- 
retical foundation for understanding these strategies, assuming the underlying asset price follows 
a geometric Brownian motion. 

In this project, we examine the practical application of Delta and Delta-Gamma hedging for 
an at-the-money call option sold under the Black-Scholes framework. The hedging strategies are 
evaluated on their ability to manage risk and minimize profit and loss deviations across varying 
market conditions. By simulating 5,000 paths for the underlying asset price, we analyze the 
differences in outcomes between the two strategies, highlighting their respective strengths and 
limitations. 

Furthermore, the project investigates the sensitivity of hedging outcomes to model assumptions, 
such as volatility (σ) and drift (µ), and incorporates realistic elements like transaction costs. These 
insights are crucial for understanding the robustness of hedging strategies under real-world market 
dynamics and for guiding practitioners in risk management decisions. 

2. METHODOLGY 

Consider the following: Assume that an asset price process S = (St)0≤t follows the Black-Scholes 
model, where the asset’s current price is $10. We immediately sell 10,000 units of an at-the-money, 
1 year call on this asset, option g, and we wish to hedge this short call option position. To execute 
this hedge, we shall trade: an at-the-money call with a maturity of 0.3 years, option h, the stock, 
and the bank account. We assume transaction costs such that we are charged $0.005 per share 
on equity transactions and $0.005 per option on option transactions. Further, we shall only trade 
integer value of stocks and options. Finally, we assume: The remaining model parameters are 
µ = 10%, σ = 25%, r = 5%, and we hedge daily. 

To implement the hedging of the position in option g, we will utilize two different strategies: 
Delta hedging, and Delta-Gamma hedging. 
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2.1. Delta Hedging. Delta is defined as the change in the value of an option, relative to the 
change in movement in the price of an underlying asset. Delta can be derived from the price of a 
call option by taking its partial derivative with respect to the price of the underlying asset. Since 
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Where N ( ) and ϕ( ) are the standard normal cumulative distribution function and the probability 
density function, respectively, and τ = T  t. 

Delta hedging is a strategy used to hedge the directional risk associated with changes in the 
price of the underlying asset. Hence we want to construct a Delta-neutral portfolio to hedge the 
risk of shorting the option. As we are adjusting the hedge position on a daily basis, we will 
take initial positions in the underlying asset and bank account to neutralize Delta at time 0, and 
then adjust these positions over the life of option g. To implement Delta hedging, we follow the 
following procedure: 

(1) Assume we start with nothing in our bank account, B0 = 0, no position in the underlying 
asset, αS = 0, and no position in the option being hedged, αg = 0 

(2) Determine the value of the bank account by computing the price of option g, and multi- 
plying this value by 10,000, the magnitude of the short position. 

(3) Compute the Delta of option g using the formula derived above. 
(4) Determine the size position in the underlying asset required to neutralize Delta. 

αS0 = αg · ∆g 

(5) Determine the number of shares that must be purchased/sold to so that our portfolio 
contains exactly αSt shares, and multiply αSt by fS = 0.005, the cost to trade a share. 

(6) Update the amount in the bank account, 

Bt = Bt−1 − (αSt − αSt−1 ) · St − |αSt − αSt−1 | · fS 

(7) Compute the future value of the bank account. 
(8) At time T, we determine the payoff of the initial position in option g, 

G(ST ) = −αg · (ST − K)+ 

and update the bank account to include the proceeds from closing the position in the 
underlying asset, 

BT = BT−1 + αST · ST 
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(9) If the payoff is zero, then we incur final transaction costs from closing out our position in 
the underlying asset, and we have a final PnL of 

PnL = BT + G(ST ) − αST · fS 

If the payoff is non-zero, then we have two sources of transaction costs at the terminal 
time T: 1. Costs incurred by closing out our position in the underlying asset, and 2. Costs 
incurred from option g being exercised. Hence we have a final PnL of 

PnL = BT + G(ST ) − |αST | · fS − |αg| · fS 

We note that since we are the writer of option g, if the option were to be exercised at terminal 
time T, then we shall only incur transaction costs for the purchase of the shares that must be 
delivered to the option holder. 

2.2. Delta-Gamma Hedging. An option’s Gamma represents the rate of change in its Delta for 
a one-unit change in the underlying stock. Hence we can derive Gamma as the second derivative 
of the option’s price with respect to the underlying asset price, or as the first derivative of the 
Delta with respect to the underlying asset price. From 2.1, we have that  d  c(t, St) = N (d+), 
hence 
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Delta-Gamma hedging combines the Delta hedge described above with Gamma hedging, where 
the objective of the strategy is to achieve both a Delta-neutral and a Gamma-neutral portfolio. 
Hence we utilize two hedging instruments: the underlying asset for Delta neutrality, and a second 
hedging option for Gamma neutrality. Thus we implement the following hedging process: 

(1) Assume we start with nothing in our bank account, B0 = 0, no position in the underlying 
asset, αS = 0, no position in the hedging option, αh = 0, and finally, no position in the 
option being hedged, αg = 0. 

(2) Determine the amount in the bank account by computing the price of option g, and mul- 
tiplying it by 10,000, the magnitude of the short position. 

(3) Compute the Delta and Gamma of both options g and h using the formula derived in 2.1, 
2.2. 

(4) Determine the size position in the hedging option required to neutralize Gamma. 

α  = 
αg · Γg 

h Γ h 

(5) Determine the size position in the underlying asset required to neutralize Delta. 

αSt = αg · ∆g + αh · ∆h 

t 

t 
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(6) Determine the number of shares and the number of hedging options that must be pur- 
chased/sold to so that our portfolio contains αSt shares and αh options, and multiply αSt 

and αh by trading costs fS = 0.005 and fO = 0.005, respectively. 
(7) Determine the price of the option h(t, St). 
(8) Update the amount in the bank account, 

Bt = Bt−1 − (αSt − αSt−1 ) · St − (αht − αht−1 ) · h(t, St) 

— (αSt − αSt−1 ) · fS − (αht − αht−1 ) · fO 

(9) Compute the future value of the bank account. 
(10) At time T, we determine the payoff of the initial position in option g, 

G(ST ) = −αg · (ST − K)+ 

and update the bank account to include the proceeds from closing the positions in the 
underlying asset and the hedging option, 

BT = BT−1 + αST · ST + αhT · h(T, ST ) 

(11) If the payoff G(ST ) is zero, then we have two sources of transaction costs at the terminal 
time T: 1. Costs incurred by closing out our position in the underlying asset, and 2. Costs 
incurred by closing out our position in option h. Hence we have a final PnL of 

PnL = BT + G(ST ) − αST · fS − αhT · fO 

If the payoff is non-zero, then we have three sources of transaction costs at the terminal 
time T: 1. Costs incurred by closing out our position in the underlying asset, 2. Costs 
incurred by closing out our position in option h, and 3. Costs incurred since option g will 
be exercised. Hence we have a final PnL of 

PnL = BT + G(ST ) − |αST | · fS − |αg| · fO − |αhT | · fO 

2.3. Sample Path Simulation. To determine the profit and loss distributions of the Delta and 
Delta-Gamma hedging strategies, we must first simulate sample paths of the asset price, which 
we assume follow a Geometric Brownian motion. We first consider the dynamic of GBM, 

dSt = µStdt + σStdBt 

Consider f (x) = log X, f′(x) =  1 , and f′′(X) = −  1  . Applying Ito’s, we have 
X X2 
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Once the asset price has been computed, we multiply through by the initial stock price and return 
the cumulative product of elements along a given simulation path. 

3. SOLUTIONS 

3.1. Question 1. We compare the profit and loss distributions of Delta and Delta-Gamma hedg- 
ing strategies by simulating 5,000 sample paths using the methodology described in 2.3, where 
all paths follow independent Geometric Brownian Motion (GBM) random walks. On each path, 
we implement both the Delta hedging strategy outlined in 2.1 and the Delta-Gamma hedging 
strategy outlined in 2.2. 

 

 
FIGURE 1. Delta and Delta-Gamma hedging strategies for 5,000 sample paths. 

 
Qualitative Observations: In Figure 1, we see two very different PnL distributions for the two 

strategies. The Delta hedging strategy produces a distribution that appears fairly normal with 
somewhat symmetric tails and centered slightly negative. In contrast, the Delta-Gamma strategy 
produces a bimodal distribution with very short tails, again centered below zero. We expect the 
means of both distributions to be negative given the impact of trading costs. 

TABLE 1. Hedging P&L Statistics 
 

Mean  Std Dev 
 

Delta Hedging P&L -171.739 560.2888 
Delta-Gamma Hedging P&L  -346.1697 135.8541 

 

 
Quantitative Observations: These aforementioned observations are consistent with the sum- 

mary statistics found in Figure 1. First, the mean of the Delta-Gamma strategy is greater in 
magnitude than that of the Delta strategy indicating worse returns, however, the standard devi- 
ation is significantly smaller. This is shown in Figure 1 where the Delta-Gamma distribution is 
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much more narrow, exhibiting very short tails. The long tails of the Delta distribution imply that 
while Delta hedging offers the potential for higher profits, it also carries a higher risk of significant 
losses. Conversely, the Delta-Gamma strategy provides more consistent but generally lower PnL 
outcomes with reduced risk. 

Next, to determine the impact of µ on the PnL distributions of the strategies, we simulate sample 
paths for µ  0.1, 0.2, ..., 0.9 . We then repeated the hedging strategies defined in 2.1, 2.2 on 
each of the new simulated paths to obtain the respective PnL. 

TABLE 2. Delta and Delta-Gamma Hedging Results 
 

Delta Delta-Gamma 
 

µ Mean Std Dev  Mean Std Dev  

0.1 -171.7390 560.2888  -346.1697 135.8541  

0.2 -190.0028 550.0752  -356.7646 130.0090  

0.3 -187.8742 540.3916  -369.1695 125.1276  

0.4 -216.5648 513.5666  -371.4583 118.8866  

0.5 -230.0154 494.7818  -376.9123 110.0328  

0.6 -237.6413 478.2571  -377.1996 97.8482  

0.7 -246.1595 458.3504  -371.8024 88.2584  

0.8 -265.2032 431.8069  -369.2411 83.4370  

0.9 -267.4748 387.5811  -362.4074 79.1769  

Impact on Distribution Mean: As shown in Table 2, increasing µ generally leads to a more nega- 
tive mean PnL for both strategies, indicating higher average losses. However, the relationship is 
not strictly linear, as seen with µ=0.3 for Delta hedging where the mean PnL slightly improves 
compared to µ=0.2. For the Delta-Gamma strategy, the mean PnL becomes more negative up to 
µ=0.6 and then starts to improve for higher µ values. Despite these variations, the overall impact 
of µ on the mean PnL appears limited. 

 
Impact on Distribution Standard Deviation: In contrast to the impact on the distribution mean, 
changes in µ have a significant impact on the standard deviation, and consequently the shape, of 
the PnL distributions for both hedging strategies. Consider the Delta hedging distribution: as µ 
increases, the standard deviation of the distribution decreases significantly, indicating that higher 
drift values lead to reduced variability in PnL outcomes. Specifically, for the Delta strategy, the 
standard deviation decreases from 560.2888 when µ = 0.1 to 387.5811 when µ = 0.9. Similarly, for 
the Delta-Gamma strategy, the standard deviation decreases from 135.8541 at µ = 0.1 to 79.1769 
at µ = 0.9. This trend suggests that as µ increases, the PnL distributions become narrower for 
both strategies, resulting in smaller potential profits and losses. The reduced standard deviation 
reflects a decrease in the risk associated with each strategy, as the outcomes are more tightly 
clustered around the mean. Notably, the Delta-Gamma strategy consistently exhibits a lower 
standard deviation compared to the Delta strategy across all µ values, highlighting its effectiveness 
in minimizing PnL variability. We observe that for each incremental increase in µ, the standard 
deviation of both hedging strategies decreases consistently. This consistent reduction underscores 
the influence of the drift parameter on the stability of PnL outcomes, making higher µ values 
desirable for strategies aiming to minimize risk. 
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Overall, while the Delta strategy offers higher potential returns, it does so at the expense of 
increased risk. The Delta-Gamma strategy provides a more stable PnL distribution with reduced 
risk but lower average returns. Figures 2-10 visualize these findings. 

 
 

 

FIGURE 2. P&L Distribution Comparison for µ = 10%. 
 
 
 
 

 

FIGURE 3. P&L Distribution Comparison for µ = 20%. 
 
 
 
 

 

FIGURE 4. P&L Distribution Comparison for µ = 30%. 



8 MATTHEW MAMELAK AND SAMANTHA MACPHERSON 
 

 

 

FIGURE 5. P&L Distribution Comparison for µ = 40%. 
 

 

FIGURE 6. P&L Distribution Comparison for µ = 50%. 
 

 

FIGURE 7. P&L Distribution Comparison for µ = 60%. 
 

 

FIGURE 8. P&L Distribution Comparison for µ = 70%. 
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FIGURE 9. P&L Distribution Comparison for µ = 80%. 
 

 

 
FIGURE 10. P&L Distribution Comparison for µ = 90%. 

 
3.2. Question 2. This question examines the positions held in the asset and the hedging option 
under Delta-Gamma hedging for two distinct sample paths, simulated using Geometric Brownian 
Motion (GBM): 

St = S0 · e(µ− 1 σ2)t+σBt. 

One path represents an in-the-money (ITM) scenario, where the asset price ends above the strike 
price, while the other represents an out-of-the-money (OTM) scenario, where the asset price ends 
below the strike price. A random seed of 47 was used to ensure consistent asset price trajectories 
for both Delta and Delta-Gamma hedging strategies. Figure 11 shows the sample paths and the 
corresponding positions in the asset and option for both scenarios. 

 

FIGURE 11. Sample Paths, Asset Positions, and Option Positions for ITM and 
OTM Scenarios. 
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Observations for In-the-Money (ITM) Path: For the ITM path, the asset price starts near the 
strike price and rises, ending above it. Initially, the option position is substantial due to higher 
Gamma sensitivity but decreases as the option moves deeper in-the-money and Delta approaches 
1. This decline reflects reduced Gamma adjustments, with the underlying asset position steadily 
increasing to match the higher Delta. These dynamics are shown in Figure 12. 

 

FIGURE 12. Delta-Gamma Hedging for In-the-Money Sample Path. 

 
Observations for Out-of-the-Money (OTM) Path: For the OTM path, the asset price starts near 
the strike price and steadily declines, ending well below it. As the option moves further out-of- 
the-money, Delta and Gamma approach zero, leading to a sharp decline in the option position and 
minimal adjustments to the underlying asset position. These dynamics are illustrated in Figure 
13. 

 

FIGURE 13. Delta-Gamma Hedging for Out-of-the Money Sample Path. 
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Comparison of ITM and OTM Hedging: The ITM and OTM paths demonstrate distinct behaviors 
in Delta-Gamma hedging due to the varying sensitivities of the option. For the ITM path, as the 
option becomes deeper in-the-money near expiration, Delta approaches 1, and Gamma decreases, 
reducing the need for frequent adjustments to the hedging position. This results in a steady in- 
crease in the position held in the underlying asset, while the position in the option decreases as the 
option’s sensitivity stabilizes. In contrast, for the OTM path, the option’s Delta and Gamma both 
approach zero as the option moves further out-of-the-money, reflecting diminished sensitivity to 
changes in the underlying asset price. This results in a consistent reduction in the option position 
over time, while the position in the underlying asset remains relatively stable due to the minimal 
impact of Delta and Gamma adjustments in this region. 

 
These observations highlight how Delta-Gamma hedging adapts to different market scenarios, 

accounting for the changing sensitivities of the option as it moves in or out of the money. 
 
 

 
3.3. Question 3. For this question, we analyze the performance of the Delta and Delta-Gamma 
hedging strategies where the real-world volatility (σ) deviates from the assumed value of σ = 25%. 
Specifically, real-world volatilities are varied in the range 20%, 22%, 24%, 26%, 28%, 30% . To re- 
flect this, we modify the volatility parameter used for simulating asset price paths via Geometric 
Brownian Motion (GBM), while keeping the volatility for the Black-Scholes pricing model fixed 
at σ = 25%. The results, including profit and loss (P&L) distributions and summary statistics, 
are presented in Figures 14–19 and Tables 3 and 4. 

 
Summary Statistics: Tables 3 and 4 summarize the mean P&L and standard deviation for both 
strategies: 

Delta Hedging: The mean P&L decreases from positive to negative as real-world volatil- 
ity increases, with the standard deviation rising, indicating higher risk and sensitivity to 
volatility misspecification: 
(1) At lower volatilities (σ = 20% and σ = 22%), Delta hedging generates positive mean 

P&L due to over-hedging, but effectiveness declines as volatility rises. 
(2) At σ = 25%, Delta hedging performs moderately well, with near-zero mean P&L and 

higher variance compared to Delta-Gamma hedging, reflecting greater risk exposure. 
(3) At higher volatilities (σ = 28% and σ = 30%), Delta hedging incurs significant losses, 

with mean P&L dropping sharply and standard deviation increasing substantially. 

 
Delta-Gamma Hedging: This strategy shows smaller losses and significantly lower vari- 
ance, mitigating extreme losses through second-order sensitivities: 
(1) At lower volatilities (σ = 20% and σ = 22%), Delta-Gamma hedging has small nega- 

tive mean P&L but maintains low variance. 
(2) At σ = 25%, Delta-Gamma hedging yields lower mean P&L than Delta hedging but 

significantly reduces variance, limiting risk exposure. 
(3) At higher volatilities (σ = 28% and σ = 30%), Delta-Gamma hedging outperforms 

Delta hedging with smaller losses and lower variance, effectively handling non-linear 
sensitivities. 

• 

• 
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TABLE 3. Delta Hedging TABLE 4. Delta-Gamma Hedging 

 

P Volatility Mean (µ) Std Dev (σ)  P Volatility Mean (µ) Std Dev (σ) 

0.20 297.1090 388.019  0.20 -339.408 54.7174 
0.22 94.6173 374.322  0.22 -347.721 64.8019 
0.24 -148.6630 371.214  0.24 -358.948 69.7094 
0.26 -405.5150 431.724  0.26 -368.435 84.9804 
0.28 -699.9470 509.180  0.28 -377.511 92.9713 
0.30 -1161.1300 782.052  0.30 -372.934 159.1160 

 
Profit and Loss Distributions: The P&L distributions for Delta and Delta-Gamma hedging across 
varying real-world volatilities (σ = 20%, 22%, . . . , 30%) illustrate the impact of model misspec- 
ification. As the real-world volatility deviates further from the assumed volatility of 25%, the 
performance of Delta hedging worsens, characterized by significantly higher variance and increas- 
ingly extreme losses. This effect is really shown at higher volatilities (σ = 28% and σ = 30%). 

In contrast, Delta-Gamma hedging appears to perform better as volatility deviates from the 
assumed value, with reduced variance and more stable outcomes. However, this improvement is 
largely an illusion, as the stability of Delta-Gamma hedging is not due to its own performance 
but rather because Delta hedging becomes substantially worse under these conditions. The trade- 
off between mean P&L and stability remains, with Delta-Gamma hedging consistently producing 
worse mean P&L but managing risk by limiting extreme losses. 

 
See Figures 14–19 below for a visualization of these trends. 

 

 
FIGURE 14. P&L Distribution Comparison for σ = 20%. 



13 
 

 

 

 
FIGURE 15. P&L Distribution Comparison for σ = 22%. 

 

 
FIGURE 16. P&L Distribution Comparison for σ = 24%. 

 

 
FIGURE 17. P&L Distribution Comparison for σ = 26%. 
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FIGURE 18. P&L Distribution Comparison for σ = 28%. 

 

 
FIGURE 19. P&L Distribution Comparison for σ = 30%. 

4. CONCLUSION 

This project explored the performance of Delta and Delta-Gamma hedging strategies under 
various conditions, including various drift assumptions, sample paths, and model misspecifications 
of real-world volatility. The analysis highlights the trade-offs between these strategies: Delta 
hedging offers higher potential returns but with greater risk, while Delta-Gamma hedging provides 
more stable outcomes with reduced variability, albeit at the cost of lower mean P&L. The results 
underscore the importance of incorporating second-order sensitivities for managing extreme losses 
and mitigating risk effectively. 
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